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In-vitro conservation consists in the maintenance of living 
biological material under aseptic conditions and can be carried out 
in the medium or long term [1,2]. In medium-term conservation, 
it is possible to highlight the slow-growing technique, in which 
propagules are kept at reduced temperatures (4°C - 15°C) with 
low luminous intensity and culture medium containing osmotic 
agents [3]. Cryopreservation, a method that guarantees the 
viability and genetic integrity of plant material for a long period 
of time, through its ultra-low temperature (-196ºC) stands out 
for long-term conservation [4].

Cryopreservation can be used for the conservation of different 
types of explants: seeds, cell suspensions, embryogenic callus, 
stem apices, lateral and axillary buds, zygotic and somatic 
embryos [5]. Cryopreserved material remains protected from 
contamination in small physical spaces and requires minimal 
maintenance in comparison to conventional storage methods, 
such as cold storage, germplasm banks and slow growth in vitro 
conservation [6,7].

The establishment of protocols for cryopreservation and 
subsequent explant survival is dependent on application of the 
most appropriate technique used for size and water content in 
plant material [8]. Thus, the choice of a method that allows a 
rapid cooling and, at the same time, leads to the direct transition 
of water from the liquid state to an amorphous or vitreous 
solid state, called vitrification, can ensure the reduction in 
crystallization [9].

Among the main cryopreservation techniques are slow cooling, 
characterized by the use of low concentrations of cryoprotectants 
and gradual temperature reduction, controlled by a 
programmable freezer [10]. The classical vitrification technique 
– PVS2 vitrification, which is based on the increase of solution 
viscosity, using highly concentrated cryoprotectant solutions 
(such as PVS2), followed by ultrafast cooling of explants, wherein 
solidification occurs without crystallization [11-13]. Droplet 
vitrification method [14] which differs from PVS2 vitrification, 
since the samples are placed on a small sterilized aluminum foil. 
One PVS2 drop is placed on samples and all aluminum foil is 
dipped in LN [15].

Encapsulation-dehydration is a technique in which explants 
are encapsulated in alginate matrix, pre-cultured in a medium 
containing high concentrations of sucrose, dehydrated by 
exposure to air in a laminar flow chamber or drying in a container 
with silica gel, reducing the water content to 20% to 30%, followed 
by rapid immersion in LN [11]. Encapsulation-vitrification is a 

combination of encapsulation-dehydration and vitrification 
methods, in which the explants are encapsulated in an alginate 
matrix, transferred to cryotubes, exposed to cryoprotectant 
solutions and rapidly frozen in LN [16].

Such techniques seek to minimize cellular damage, and 
consequently increase the regeneration rate of explants [17-19]. 
Thus, cryopreservation becomes a tool for the successful creation 
of germplasm banks, in which cryopreserved plant material will 
be readily available for regeneration [4].

Cryopreservation techniques have been used to store live 
biological material, for long periods [20]. However, during 
the sequential stages of cryopreservation, the plant material 
is exposed to some cryoprotectant solutions such as Loading 
Solution - LS; Plant vitrification solution - PVS; and Recovery 
Solution - RS, which basically consist of distilled water, high 
concentrations of sucrose, MS basal salts, ethylene glycol, Glycerol 
and dymethylsulfoxide- DMSO [21]. All these compounds in 
contact with the intracellular space for a certain period can lead 
cells to osmotic and oxidative stress and thus damage the tissues, 
making it impossible to regenerate the explants. Nevertheless, all 
the factors affecting the success of cryopreservation, especially 
biochemicals with important implications for plant material 
survival, are not yet known [5].
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Stress factors such as dehydration from vitrification solutions, 
as well as freezing and thawing, can induce the production of 
Reactive Oxygen Species (ROS) [22]. As a consequence of aerobic 
life, ROS are formed by the partial reduction of molecular 
oxygen [23]. Oxidative stress conditions are characterized by the 
accumulation of different ROS: superoxide radical (O2

●-), hydroxyl 
radical (●OH), singlet oxygen (1O2) and hydrogen peroxide (H2O2). 
Under normal physiological conditions, there is a balance 
between the formation of ROS and the protective antioxidant 
mechanisms of cells [24,25]. In plant cells, ROS can be formed 
preferentially in mitochondria, chloroplasts and peroxisomes 
[22]. On the other hand, these organelles act in an integrated 
way to overcome the situation of oxidative stress and to maintain 
cellular redox balance [26]. When this balance is disrupted, the 
increase in ROS can induce cell damage and even leads to cell 
death [23,27]. It is known that increased levels of ROS can cause 
damage to biomolecules such as DNA and proteins [28] and, by 
reacting with membrane lipids, a process called lipid peroxidation 
can occur, which may trigger programmed cell death [29], shown 
in Figure 1.

In general, plant cells have two mechanisms to maintain stable 
levels of ROS: (i) enzymatic: represented by the action of enzymes 
such as superoxide dismutase (SOD), ascorbate peroxidase (APX) 

Figure 1 Schematic of ROS overproduction in the extracellular space (1) and their interaction with cryoprotectant substances such 
as dimethylsulfoxide (DMSO) (2), glucose (3), glycerol (4), fructose (5) and ethylene (6), resulting in oxidative stress (7) and 
lipid peroxidation (8) through the oxidative deterioration of polyunsaturated lipids present at cell membrane, leading to 
reduced malondialdehyde (9). These factors lead to changes in membrane permeability disorders, changing the flow of ions 
and other substances, causing the loss of selectivity for incoming and/or outgoing water and toxic substances to the cell, such 
as cryoprotectants (10).

and catalase (CAT) and; (ii) non-enzymatic: includes the ascorbate 
(ASC)/glutathione (GSH) cycle [26]. The activity of the antioxidant 
system is a defense mechanism triggered when the cells are 
confronted with some type of stress [30]. However, proper ROS 
concentrations can stimulate the transcription of defense genes 
and trigger adaptive responses in the plant [31].

Recent studies support the hypothesis that oxidative stress may 
be an implicit component in somatic embryogenesis and seed 
germination [30]. However, at the same time, proteins were 
identified, expressed after the explant underwent cryoprotectant, 
freezing treatments, and an influence of cryoprotectant excess 
was verified at the intracellular space. Together with these 
observations, it was found that lipid peroxidation shows a 
negative correlation with the cryopreserved explants survival, 
an important factor to evaluate cell survival during the cryogenic 
treatment, thus modulating the effects of excessive ROS production.

Different factors can trigger stress signals that end up being 
responsible for the convergence of cell signaling pathways. 
Therefore, studies on biochemical aspects of cryopreservation 
may increase the understanding of stress associated with 
cryopreservation and provide clear solutions for the oxidative 
stress control and elimination of free radicals, essential for the 
technique’s success for a greater number of species.
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